3D sequential integration: technology and application status

<u>Perrine Batude</u>, Claire Fenouillet-Beranger, Laurent Brunet, Vincent Mazzocchi, Cao-Minh Vincent Lu, Fabien Deprat, Jessy Micout, Bernard Previtali, Paul Besombes, Nils Rambal, François Andrieu, Olivier Billoint, Mélanie Brocard, Sébastien Thuries, Guillaume Berhault, Alexandre Ayres, Fabienne Ponthenier, Cristiano Lopes Dos Santos, Gérald Cibrario, Fabien Clermidy, Daniel Gitlin, Olivier Faynot and Maud Vinet

Bottom MOSFET process with or wo interconnects

Top active creation: Future MOSFET channel

Top MOSFET process

3D contact formation

Also named ... 3D monolithic ... 3D VLSI

3D sequential integration

Bottom MOSFET process with or wo interconnects

Top active creation thin (10-100nm)

Top level pattern by litho Top MOSFET process

Alignment TOP/ BOT e.g: 28nm node: 3σ<5nm

3D contact formation: Standard W plug in oxide

3D sequential integration

Bottom MOSFET process with or wo interconnects

Top active creation thin (10-100nm)

Top level pattern by litho Top MOSFET process

3D contact formation: Standard W plug in oxide

3D Contact scales with the device technology e.g: 28nm node: ~40nm

3D sequential integration

oxyde

Bottom MOSFET process with or wo interconnects

Top active creation thin (10-100nm)

Small 3D via AR Small Parasitic C

Top level pattern by litho Top MOSFET process

3D contact formation: Standard W plug in oxide

N/P stack: the integration engineer's graal

If for each FET polarity, one were to pick the best possible:

- Channel material
- Gate stack
- Stressors

- Contact metallurgy
- Surface orientation
- Device Architecture

...then 3D sequential spares numerous litho steps and process selectivity challenges vs. co-planar

^{**}T. Irisawa *et al.,* VLSI 2013 (AIST)

[1] K. Arabi et al., ISPD 2015 [2] O. Billoint et al., ISPD 2015

The new graal: Circuit power efficiency

How: Distributed memory in between the stacked layers

Stacking 4 layers with RRAM in between MOSFETS [1]

N₃XT Computing system [2]

X 1000 gain in consumption expected with computing in memory - Need fine grain partitionning (Seq)

[1] Shulaker et al., IEDM 2014, [2] Aly et al., Rebooting computing, 2015 Slide 19

Thermal considerations: 3D seq vs 3D pack

The substrate thickness is very small in 3D sequential

 \rightarrow smaller lateral heat conduction \rightarrow Hot spot

Small interdie thickness (60nm)

→ Die to die thermal coupling (vertical coupling) and temperature smoothing via the substrate

3D sequential thermal behaviour equivalent to TSV based integration process

[1] C. Dos Santos, 3DIC 2017

Outline

3D VLSI CoolCube characteristics

3D VLSI CoolCube opportunities A Digital Computing (More Moore) B Sensor interface (More than Moore)

Process integration

Multiple benefits

- BSI integration \rightarrow high quantum efficiency
- Photodiode area +44% for 1.4µm pitch pixel

Sequential 3D can address these dimensions

NEMS/CMOS CO-integration enabler Challenge: detecting NEMS resonance 3D sequential NEMS + CMOS Stand alone NEMS + off-chip CMOS No density limitation No density (pads number limitation) no signal attenuation Very strong signal attenuation (LP filter) NEMS NEMS ASIC Sequential 3D can solve detection limitation Very small parasitics

I. Ouerghi et al., IEDM 2014

3D seq demonstrations & main actors "Conventional MOSFETs *et al.*," (Si, Ge and III-V) i.e. target 100% perf team

3D seq demonstrations & main actors

"Innovative MOSFETs *et al.*," (TFT & CNT) i.e. Low cost & low thermal budget team

Logic and Memory: CNT FETs, RRAM, Si -FETs (Stanford 2014).

CoolCube[™]**process flow**

A - Bottom tier: what maximum thermal budget to keep perf at 100%?

B- Top tier: How achieving LT Top FET with 100% perf?

[1]: P. Batude et al., VLSI 2015

Interconnections stability

R & C stability [1] Up to 500°C 2h for Cu/ULK Up to 550°C 5h for W/ULK

Voltage	Electric field	Reference	450 °C	500 °C	550 °C
٧	(MV/cm) ⁰⁸	Liftetime (Year)			
1.115	0,498	10 ¹⁶	10 ¹⁸	10 ¹¹	10 ⁹
1.98	0.668	10 ¹⁸	10 ¹¹	10 ⁹	10 ⁵
2.5	0.745	1013	10 ¹⁰	10 ⁵	107

Reliability validated for W/ULK at 550°C, 2h [2]

[1] C. Fenouillet-Beranger et al., SSDM 2015, [2]: V. Lu et al., VLSI 2017

Manufacturability: Top channel creation

Si Thin film transfer by SOI bonding

SOI transfers above MOSFETs demonstrated in 300mm Low thermal budget<400°C Perfect cristalline quality and thickness control

Manufacturability: contamination

	Ni (at/cm²)	
cleaning before bonding	< 9,4E8	
bonding annealing	< 9,4E8	
High-k deposition	2.9E+09	
gate stack etch	8,3E9	
epitaxy	6.40E+09	
dopant activation annealing	2,8E9	

bevel edge VPD-DC-ICPMS

Manufacturing compatible contamination

L Brunet, VLSI 2016

300mm fab demonstration

✓ Nanometric lithography alignment at wafer scale

✓ 3D contact size=100nm

✓ 10nm thin top active layer

L Brunet, VLSI 2016

Conclusions

The 3D contact characteritics offers a large set of applications with timing depending on the technology complexity.

For computing, first assessments are promising and place and route tools are needed to fully quantify the performance.

3D sequential is demonstrated in a 300mm industrial environment

Bottom tier (MOSFET and interconnection) max TB =500°C 2h

All the bricks for top FET can be within this 500°C TB limitation

Thank you to all Cool CubeTM co-authors

This work is partly funded by: French authorities: NANO 2017 program, EQUIPEX FDSOI11 Europe: FP7 COMPOSE3, ST-IBM-LETI Alliance program and by Qualcomm.

Acknowledgements:

LASSE for the laser anneal demonstrations SOITEC for the III-VOI SmartCutTM co-development AMAT for their support.

Thank YOU for your attention